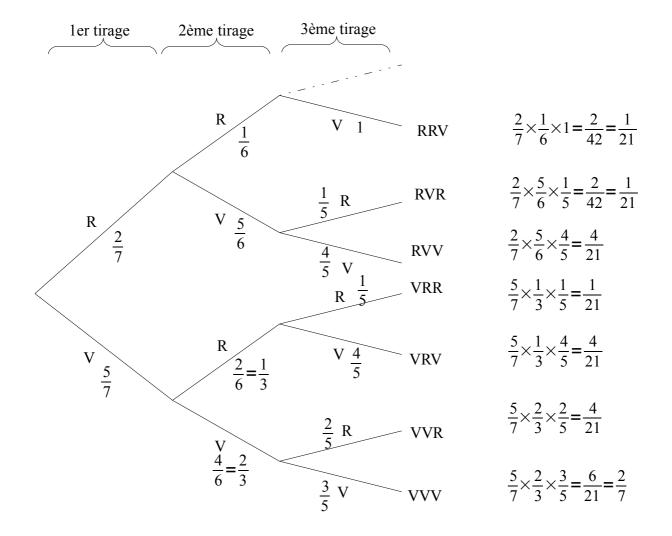

PROBABILITES (Partie 3) - TIRAGE SANS REMISE


Une boîte opaque contient **2 boules rouges** et **5 boules vertes**. On effectue **3 tirages sans remise**, c'est-à-dire que l'on tire au hasard une première boule, on la met de côté, on en tire une seconde, on la met également de côté et on en tire enfin une troisième.

On note R_i l'évènement « tirer une boule rouge au tirage $n^\circ i$ », V_i l'évènement « tirer une boule
verte au tirage n°i». i est un indice qui renseigne sur le numéro du tirage: i = 1 ou i = 2 ou i = 3
ex: R_1 est l'évènement: «»
Calculer, en justifiant, la probabilité de l'évènement R ₁ .
Que peut-on dire des évènements R_1 et V_1 ?
Est-il possible de calculer directement $p(R_2)$ comme on l'a fait pour $p(R_1)$?
Expliquer la différence qu'il y a entre un tirage avec remise et un tirage sans remise:
Tirage avec remise: évènements
Tirage sans remise: évènements
On appelle E l'évènement « tirer une boule rouge au deuxième tirage quand on a tiré une boule rouge au premier tirage ». Calculer, en justifiant, la probabilité de l'évènement E.
A. Construction de l'arbre :
A. Construction de l'arbre : Décrire l'arbre des probabilités qu'il faut construire: niveaux et branches.
Décrire l'arbre des probabilités qu'il faut construire: niveaux et branches.
Décrire l'arbre des probabilités qu'il faut construire: niveaux et branches. Le compléter en indiquant toutes les issues et les probabilités de chaque branche.
Décrire l'arbre des probabilités qu'il faut construire: niveaux et branches. Le compléter en indiquant toutes les issues et les probabilités de chaque branche. En déduire les probabilités pour chaque issue. Vérifier que la somme est égale à 1 .

2. De la même manière, **encadrer** les issues où l'on a tiré exactement une boule rouge. **Déduire** de l'arbre la probabilité de l'évènement F « tirer <u>exactement</u> une boule rouge ».

CORRECTION DE L'ARBRE

$$\mathbf{p}(\mathbf{R}_{2}) = p(R_{2}/R_{1}) \times p(R_{1}) + p(R_{2}/V_{1}) \times p(V_{1}) = \frac{1}{6} \times \frac{2}{7} + \frac{1}{3} \times \frac{5}{7} = \frac{1}{21} + \frac{5}{21} = \frac{6}{21} = \frac{2}{7}$$
ou $p(R_{2}) = p(RRV \text{ ou VRR ou VRV}) = p(RRV) + p(VRR) + p(VRV) = \frac{1}{21} + \frac{1}{21} + \frac{4}{21} = \frac{2}{7}$

$$\mathbf{p}(\mathbf{F}) = \mathbf{p}(\mathbf{R}\mathbf{V}\mathbf{V}) + \mathbf{p}(\mathbf{V}\mathbf{R}\mathbf{V}) + \mathbf{p}(\mathbf{V}\mathbf{V}\mathbf{R}) = \frac{4}{21} + \frac{4}{21} + \frac{4}{21} = \frac{12}{21} = \frac{4}{7}$$