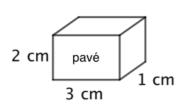

## AGRANDISSEMENT ET REDUCTION

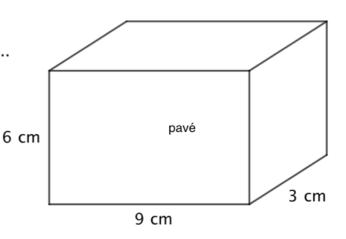
## Exemple 1: agrandissement d'un triangle

Les longueurs ont été multipliées par ....3.... mais l'aire a été multipliée par ....9....




Aire = 
$$\frac{1 \times 2}{2}$$
 = 1 cm<sup>2</sup>




Aire = 
$$\frac{3 \times 6}{2}$$
 = 9 cm<sup>2</sup>

## Exemple 2 : agrandissement d'un parallélépipède rectangle

Les longueurs ont été multipliées par ..3... mais les volumes ont été multipliés par ...27....



Volume =  $3 \times 1 \times 2 = 6 \text{ cm}^3$ 



Volume =  $9 \times 3 \times 6 = 27 \times 6 = 162 \text{ cm}^3$ 

## Lors d'un **agrandissement (ou d'une réduction)** de coefficient *k* :

- les longueurs sont multipliées par *k*,
- les aires sont multipliées par  $k^2$ ,
- les volumes sont multipliés par  $k^3$ .

Dans le cas d'un agrandissement, on a k > 1.

Dans le cas d'une réduction, on a k < 1.

On retiendra la règle  $(k; k^2; k^3)$ .

Dans tous les cas, les angles restent inchangés.