DISTRIBUTIVITE: développer et réduire

Activité: Les caramels et les bonbons

On a 3 sachets contenant **chacun** 8 caramels et 5 bonbons.

On appelle **c le prix d'un caramel** et **b le prix d'un bonbon**.

a) Quel est le prix d'un sachet en fonction de b et de c?.....

Quel est le prix **total** des 3 sachets **en fonction de** b et de c?.....

b) Combien de caramels a-t-on en tout? et de bonbons?

En déduire une autre expression du prix total des 3 sachets:

D'où l'égalité :

On dit qu'on a **développé** l'expression. On a transformé un en en

En supposant qu'un caramel coûte 0,50 € et qu'un bonbon coûte 0,20 € calculer le prix total des trois sachets de deux manières différentes:

Exemples: **Développer et réduire** les expressions suivantes:

$$4 \times (2x + 7)$$
 $3 \times (4x - 5)$ $2 \times (5x + 3y - 8)$ = = = =

Exercice 1 : Développer puis réduire les expressions suivantes:

$A = 3 \times (x + 9)$	$B = 5 \times (2x + 11)$	$C = 6 \times (7x + 8)$
=		=
=		=
$D = (7x + 10) \times 8$	$E = 5 \times (7 - x)$	$F = 9 \times (3x - 1)$
=	=	=
=	=	=
$G = 10 \times (2x - 7)$	$H = 4 \times (5x - 6)$	$I = (-2) \times (8x - 3)$
=	=	=
=	=	=
$J = (-6) \times (2x + 9)$	$K = (-5) \times (-8x - 1)$	$L = 2 \times (3x + 2y - 6)$
=	=	=
=	=	=
$M = 5 \times (-2x - 3y + 7)$	$N = (-7) \times (2x - 9y + 11)$	$0 = (-9) \times (5x + 4y - 10)$
=	=	=
=	=	=

Evenoven	2	
EXERCICE	1.	•

1. Compléter les deux programmes de calculs:

Programme A:

Nombre choisi:	2	30	x
A) Ajouter 7			
B) Multiplier le résultat par 5			

Programme B:

Nombre choisi:	2	30	x
A) Multiplier par 5			
B) Ajouter 35 au résultat			

Que peut-on dire de ces deux programmes de calculs ?
Le prouver.

EXERCICE 3:

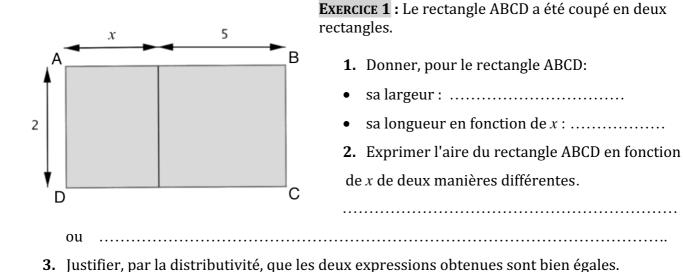
1. Compléter le programme de calculs suivant:

Nombre choisi:	3	11	x
A) Multiplier par 4			
B) Ajouter 8			
C) Multiplier par 1,25			
D) Retrancher 10			

2. Que peut-on dire du résultat final obtenu ?
Il semble que le résultat final soit obtenu en
3. On va le prouver. Pour cela, développer puis réduire l'expression littérale obtenue:
4. Quel résultat obtiendrait-on si on choisissait au départ le nombre 62 ?

Exercice 4:

Le professeur a donné la consigne suivante:


"avec votre calculatrice, choisissez un nombre, ajoutez 27 à ce nombre et multiplier le résultat par 2."

Voici ce que certains élèves ont tapé à la calculatrice:

Maëlys	Johann	Paul	Jade
+27 =	$+27 \times 2 =$	$(+ 27) \times 2 =$	×2 =
×2 =			+54 =

Qui (parmi Maëlys, Johann et Paul) a raison ? Expliquer.
Jade a par erreur commencé par la multiplication. Elle a ensuite ajouté 54. A-t-elle raison? Pourquoi

Application de la distributivité en géométrie: calculs d'aires

EVEDCICE	2.
EXERCICE	Z :

On note A_1 l'aire du carré, A_2 l'aire du rectangle de gauche et A_3 l'aire du rectangle de droite.

4. Calculer l'aire du rectangle ABCD pour x = 3 de deux manières différentes.

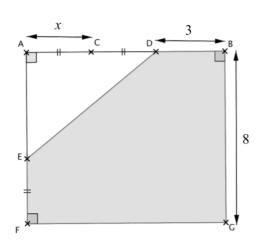
En utilisant les formules d'aires:

- exprimer A_2 en fonction de x:
- exprimer A_3 en fonction de x:

Donner une relation entre A_1 , A_2 et A_3 :

EXERCICE 3:

On note \mathcal{A}_t l'aire du triangle ADE, \mathcal{A}_r l'aire du rectangle ABGF et \mathcal{A}_p l'aire du pentagone gris.


Exprimer les longueurs AD, EF, AE et AB en fonction de \boldsymbol{x}

AD = EF =

AE = AB =

Exprimer \mathcal{A}_r **en fonction de** x:

Exprimer \mathcal{A}_t en fonction de x:

En deduire I aire A_p en fonction de x :	