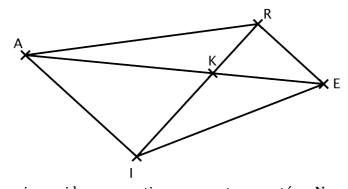
QCM sur le théorème de Thalès (classique et papillon)

A

В


 \mathbf{C}

ENTOURER LA (OU LES) BONNE(S) RÉPONSE(S).

ENONCE

A X					
Les points A, B et L sont alignés ainsi que A, R et C.					
Si le triangle LAC est un agrandissement de coefficient 3,5 du triangle BAR, alors	LC = 3,5	BR = 3,5 × LC	$LC = 3.5 \times BR$		
Si le triangle LAC est un agrandissement de coefficient 1,8 du triangle BAR, alors	ALC = ABR	$ALC = 1.8 \times ABR$	$ABR = 1.8 \times ALC$		
On suppose que (BR) // (LC). D'après le théorème de Thalès	$\frac{AB}{BL} = \frac{AR}{RC} = \frac{BR}{LC}$	$\frac{AB}{AL} = \frac{AR}{AC} = \frac{BR}{LC}$	$\frac{LC}{BR} = \frac{AL}{AB} = \frac{AC}{AR}$		
$\operatorname{Si}\frac{5}{8} = \frac{3}{LC}\operatorname{alors}$	LC = 1,875 cm	LC = 4,8 cm	$LC = \frac{24}{5} \text{ cm}$		
Si les triangles ABR et ALC sont semblables avec un facteur de réduction égal à 0,6 alors	BR = LC ÷ 0,6	BR = 0,6 × LC	$LC = 0.6 \times BR$		

Les points A, K et E sont alignés ainsi que I, K et R.

Attention, ni les dimensions ni les proportions ne sont respectées. Ne pas se fier à la figure !

On suppose (AI) // (RE). D'après le théorème de Thalès	$\frac{AK}{AE} = \frac{IK}{IR} = \frac{AI}{RE}$	$\frac{KA}{KE} = \frac{KR}{KI} = \frac{AI}{RE}$	$\frac{KA}{KE} = \frac{KI}{KR} = \frac{AI}{RE}$
$\operatorname{Si}\frac{4,5}{3} = \frac{AI}{2} \operatorname{alors}$	AI = 2 cm	AI = 3 cm	AI = 3,33 cm
AK = 4,5 cm, KE = 3 cm IK = 6 cm, KR = 4 cm On peut affirmer que:	les droites (AE) et (RI) sont sécantes	les droites (AR) et (IE) sont parallèles	les droites (AR) et (IE) ne sont pas parallèles